HKIOEH Annual General Meeting 2021 & Annual Occupational Hygiene Technical Conference

SOURCE IDENTIFICATION AND CONTROL FOR INDOOR RADON LEVEL

LIN Yanchang, Forest Safety Office The University of Hong Kong

Contents

- Introduction
 - Radon isotopes
 - Radon decay
 - Radon detectors/monitors
- Radon action level
- Radon level in office and public place in the IAQ Certification Scheme
- 3 ways for radon control
- Source identification for high radon in specific work place and lab with ventilation
- Source identification for high radon in general office/home with poor ventilation

Radon Isotopes

- 。Rn-220 (Thoron, 針射氣)
 - Source: Th-232 ... -> Ra-224 -> Rn-220
 - Half life: 55.6 s
- 。Rn-222 (Radon, 氡氣)
 - Source: U-238(99.274%) ... -> Ra-226 -> Rn-222
 - Half life : 3.82 d
- 。Rn-219 (Actinon,鋼射氣)
 - Source: U-235(0.72%) ... -> Ra-223 -> Rn-219
 - Half life : **3.96 s**

Rn-222 decay chain

Image from:

https://commons.wikimedia.org/wiki/File:Decay_chain(4n%2B2,_Uranium_series).svg

- Measurement of Rn-222
 - Gamma of daughters -> Carbon canister
 - Alpha from Rn-222 & all alpha emitter daughters -> Luca cell
 - Alpha from Po-218 and Po-214

Professional Radon detector/monitor

Active Collection of Progenies & Alpha Spectrum Analysis with Semiconductor detector

RAD7, Super sensitive Rn detector for Super Kamiokande, Daya Bay ${\rm H}^3$

Passive total count detection of Progenies Pylon AB-5 & AB-6

Radon action level

• ICRP Publication 65 (1993): Protection Against Radon-222 at Home and at Work

Action level (dwellings) Radon concentration Annual effective dose	(Bq m ⁻³) mSv	200-600ª 3-10
Action level (workplaces) Radon concentration Annual effective dose	(Bq m ⁻³) mSv	500-1500ª 3-10

- In Publication 103 (ICRP, 2007), the Commission recommended upper values for derived reference levels of 600 Bq m³ for homes and 1500 Bq m³ for workplaces.
- ICRP PUBLICATION 115 (2010): Lung Cancer Risk from Radon and Progeny and Statement on Radon
 - In response to its review of radon epidemiology in Publication 115 (ICRP, 2010) and the increase of the nominal risk coefficient by approximately a factor of 2, the Commission reduced the upper reference level for homes from 600 Bq m³ to 300 Bq m³ in the associated Statement on Radon.
 - the Commission also revises downwards the reference level for workplaces, recommending a single value of 1000 Bq/m³ which serves as an entry point for applying occupational radiological protection requirements.

Guidance Notes for the Management of Indoor Air Quality in Offices and Public Places

- https://www.iaq.gov.hk/media/82253/gn_officeandpublicplace_eng-2019.pdf
- Indoor Air Quality Management Group, HKSAR
- Chinese version also availible:
- https://www.iaq.gov.hk/media/8688/certguide-chi.pdf
- 。辦公室及公眾場所 室內空氣質素 檢定計劃指南
- 。香港特別行政區室內空氣質素管理小組

Parameter				C I C
Pollutant	Averaging Time	Unit	- Excellent Class	Good Class
Carbon Dioxide (CO ₂)	8-hour	mg/m ³	1,440	1,800
		ppmv	800 ^a	1,000 ^a
Carbon Monoxide (CO)	8-hour	$\mu g/m^3$	2,000 ^b	7,000 °
		ppmv	1.7	6.1
Respirable Suspended Particulates (PM ₁₀)	8-hour	$\mu g/m^3$	20 ^d	100 ^d
Nitrogen Dioxide (NO ₂)	8-hour	µg/m ³	40 [°]	150 ^e
		ppbv	21	80
	1-hour	$\mu g/m^3$	100 °	200 °
		ppbv	53	106
Ozone (O ₃)	8-hour	$\mu g/m^3$	50 ^b	120 ^f
		ppbv	25	61
Formaldehyde (HCHO)	8-hour	$\mu g/m^3$	30 ^b	100 ^b
		ppbv	24	81
	30-minute	$\mu g/m^3$	70 °	100 °
		ppbv	57	81
Total Volatile Organic		$\mu g/m^3$	200 ^b	600 ^b
Compounds (TVOC) 8-hou	8-hour	ppbv	87	261
Radon (Rn)	8-hour	Bq/m ³	150 ^g	167 °
Airborne Bacteria	8-hour	cfu/m ³	500 ^{h,i}	1,000 ^{h,i}
Mould			Assessment in form of prescriptive checklist (refer to A Guide on Indoor Air Quality Certification Scheme for Offices and Public Places (2019) j	

Table 3-2: IAQ Objectives for Office Buildings and Public Places (Effective on 1 July 2019)

- g. USEPA (2016): A Citizen's Guide to Radon. (Note: 4 pCi/L or 150 Bq/m 3 is EPA Action Level).
- c. WHO (2010), WHO guidelines for indoor air quality: Selected pollutants. Information from WHO has been taken into account for radon value in the above table, though WHO has no 8hour averaging reference level for radon.

Control of Radon Indoor

- Control of source
 - High Ra-226 construction material
 - High Rn in soil (tens of kBq/m^3) -> High Rn underground/basement
- Control of transportation
 - Release from underground water
 - Emanate from walls, floor
- Control of accumulation
 - Ventilation

Radon variating with ventilation

High Radon Level in a Clean Room

High Radon Level in a Clean Room

• Where does Radon come from ?

Rn in clean room and AC room: up to ~ 300 Bq/m^3 ???

Strong ventilation does NOT help.

Cable Trough Terminal in AC Room

Before block: ~1200 Bq/m^3 Feel warm air flowing in

After temporarily block: ~ 700 Bq/^3

Rn in clean room and AC room: ~ drop by half the second day

Issues & Examples

• Example 4: Where does Radon come from ?

High Radon Level in Underground Lab

• Where comes the Radon ? History repeats again?

- Rn in a underground lab : ~ 800 Bq/m^3 every where???
- Fresh air supplied to lab via long duct in a tunnel.
- Lack of fresh air due to resistance in long(>1km) duct?
- In-line fan added at middle. No improvement observed.

Source Identification

- Where comes the Radon ? History repeats again?
 - Rn in tunnel : > 1000 Bq/m^3. Might be the source
 - Search port/window/gap connect the hall and tunnel ...
 - The answer: an emergency smoke vent port near an air intake of AC1 (worker forgot to close it after open for Fire Department's inspection)
 - Close the vent port, Rn went normal the second day.

High Radon level in general office/home ?

Tiles

Concrete

Emanation Test for source identification and control evaluation

Electronic Radon Detector with wireless connection with cell phone

Emanation Test Setup

Tests of painting on concrete floor

Raw concrete

Concrete with filling

With prime wall painting

With surface wall painting

Test results for wall fillings and paintings

TP2

Summarize

- Hong Kong adopts high radon safety standard;
- High radon level might occur in rare cases in local office and public places;
- Ventilation not always work for control of radon at work place;
- It needs experience to identifying the source by direct measuring of radon in air;
- Emanation test could help to identify surfaces which release higher radon;
- Proper commercial painting helps to reduce radon.

Thanks!

<u>linyc@hku.hk</u> <u>linyc76@gmail.com</u>